SUPERCONDUCTIVITY IN MERCURY

In 1911, Dutch physicist Heike Kamerlingh Onnes discovered superconductivity in mercury. He found that at a very low temperature, called the threshold temperature, solid mercury offers no resistance to the flow of electric current.

The BCS theory

  • Scientists later classified mercury as a conventional superconductor because its superconductivity could be explained by the concepts of Bardeen-Cooper-Schrieffer (BCS) theory.
  • While scientists have used the BCS theory to explain superconductivity in various materials, they have never fully understood how it operates in mercury — the oldest superconductor. A group of researchers from Italy recently set out to “fill this gap”, as they wrote in their November 3 paper in the journal,Physical Review B.
  • The researchers used “state-of-the-art theoretical and computational approaches” and found that “all physical properties relevant for conventional superconductivity… are anomalous in some respect” in mercury.
  • In a testament to their strategy, they were able to work out a theoretical description for superconductivity in mercury that predicted its threshold temperature to within 2.5% of the observed value.
  • In BCS superconductors, vibrational energy released by the grid of atoms encourages electrons to pair up, forming so-called Cooper pairs. These Copper pairs can move like water in a stream, facing no resistance to their flow, below a threshold temperature.
  • By including certain factors that physicists had previously sidelined, the group’s calculations led to a clearer picture of how superconductivity emerges in mercury. For example, when the researchers accounted for the relationship between an electron’s spin and momentum, they could explain why mercury has such a low threshold temperature (around –270°C).

Coulomb repulsion

  • Similarly, the group found that one electron in each pair in mercury occupied a higher energy level than the other. This detail reportedly lowered the Coulomb repulsion (like charges repel) between them and nurtured superconductivity.
  • Thus, the group has explained how mercury becomes a superconductor below its threshold temperature.
  • Their methods and findings suggest that we could have missed similar anomalous effects in other materials, leading to previously undiscovered ones that can be exploited for new and better real-world applications.

 

SOURCE: THE HINDU, THE ECONOMIC TIMES, PIB

About sree nivas

Check Also

thota

The Transplantation of Human Organs and Tissues Act (THOTA)

Concept The Transplantation of Human Organs and Tissues Act (THOTA) was enacted in India in …

Leave a Reply

Your email address will not be published. Required fields are marked *

Get Free Updates to Crack the Exam!
Subscribe to our Newsletter for free daily updates